Anamorphic Art

Never argue with an angle - they're almost never right.

What is Anamorphic Art?

- A distorted image that can only be viewed correctly from a single point
- Popular during Victorian era, but appears in Renaissance art as well
- Leonardo da Vinci had a sketch in a notebook, considered the first known example of anamorphic art:

What is Anamorphic Art?

- Artists, like Julian Beever, use anamorphic art techniques to create elaborately detailed sidewalk art
- From almost any vantage point, the images are difficult to identify

What is Anamorphic Art?

- Artists, like Julian Beever, use anamorphic art techniques to create elaborately detailed sidewalk art
- From almost any vantage point, the images are difficult to identify
- But from a particular angle, the images appear three dimensional

What is Anamorphic Art?

- This art requires a lot of planning, and are challenging because the artist themselves cannot view their work from the "correct" location as they progress

What is Anamorphic Art?

- Incorporating real 'actors' into the scene can make the images more convincing

What is Anamorphic Art?

- The same effects can be applied to other surfaces, including vertical walls and ceilings

What is Anamorphic Art?

- Real wall, fake tunnel... Roadrunner?

What is Anamorphic Art?

- To create anamorphic art, we just need an idea and a location... with a perfect spot to view it
- Sidewalks are a popular canvas, but you can create convincing anamorphic art on paper as well

What is Anamorphic Art?

- Trimming around the image can add to the effect
- Another style involves using paper with a single crease, such as adjoining pages in a book

How to do it: Method 1

- How did Hans Holbein the Younger create this anamorphic skull in The French Ambassadors?

How to do it: Perspective Grid

- Begin with an image drawn on a traditional squared grid.
- Map the image, point by point, to a distorted grid, where one set of parallel lines intersect off canvas.
- The distorted version can be viewed properly from the "vanishing point" where the grid lines intersect.

How to do it: Perspective Grid

- To make the perspective grid, we need mathematics
- Begin with a regular square grid

$$
R(\theta)(a, b)=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
1
\end{array}\right]
$$ points (a,b)

- We apply a 3D rotation matrix to the grid by multiplying the matrix and each point (a,b)

How to do it: Perspective Grid

- To make the perspective grid, we need mathematics
- Begin with a regular square grid
- The lines of the grid intersect at points (a,b)
- We apply a 3D rotation matrix to the grid by multiplying the matrix and each point (a, b)
- Adjusting the angle of rotation gives us a different perspective

How to do it: Perspective Grid

- Rotating around a different axis can also give us a different perspective, but all of them turn out to be the same (just turned)

Counterclockwise rotation around x-axis

$$
R_{x}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]
$$

Counterclockwise rotation around y-axis

$$
R_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right]
$$

Counterclockwise rotation around z-axis

$$
R_{z}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Cylindrical Anamorphs

- Another form of anamorphic art involves making an image that only appears "correct" when viewed as a reflection
- A popular choice of reflective
 surface is a cylinder, but any shape will work (if you can figure out the corresponding grid)
- When we view a reflection in a flat mirror, the image is not distorted
- In a curved mirror, the angle of reflection is a little different for each point

Cylindrical Anamorphs

- Notice the rays reflecting off the flat mirror - the angle of "entry" is the same as the "exit" angle. If a ray hits the mirror at 20 degrees, it will reflect off the mirror at 20 degrees

- The same property holds on a curved mirror, but the angles are measured against the tangent line to the curve where the ray hits. This means the rays are "scattered".

Cylindrical Anamorphs

Istvan Orosz, Mysterious Island

Cylindrical Anamorphs

Istvan Orosz, Mysterious Island

Cylindrical Anamorphs

Marianne Birkby, Potter's Ennerdale

How to do it: Cylindrical Anamorphs

- The grid we map to is shaped according to the object we're using as our reflective surface
- For a cylinder, the grid would look something like this
- The circle is where the cylinder should be placed for the best effect

How to do it: Cylindrical Anamorphs

- However, complicated cylindrical anamorphic art is usually created in a less mathematical way: simply draw while looking at the reflection, rather than the drawing

